Controllable and Rapid Synthesis of High-Quality and Large-Area Bernal Stacked Bilayer Graphene Using Chemical Vapor Deposition

نویسندگان

  • Wei Liu
  • Stephan Kraemer
  • Deblina Sarkar
  • Hong Li
  • Pulickel M. Ajayan
  • Kaustav Banerjee
چکیده

Bilayer graphene has attracted wide attention due to its unique band structure and bandgap tunability under specific (Bernal or AB) stacking order. However, it remains challenging to tailor the stacking order and to simultaneously produce large-scale and high-quality bilayer graphene. This work introduces a fast and reliable method of growing high-quality Bernal stacked large-area (>3 in. × 3 in.) bilayer graphene film or trilayer graphene domains (30 μm × 30 μm) using chemical vapor deposition (CVD) on engineered Cu−Ni alloy catalyst films. The AB stacking order is evaluated by Raman spectra, electron diffraction pattern, and dual gate field-effect-transistor (FET) measurements, and a near-perfect AB stacked bilayer graphene coverage (>98%) is obtained. The synthesized bilayer and trilayer graphene with Bernal stacking exhibit electron mobility as high as 3450 cm/(V·s) and 1500 cm/(V·s), respectively, indicating comparable quality with respect to exfoliated bilayer and trilayer graphene. The record high (for CVD bilayer graphene) ON to OFF current ratios (up to 15) obtained for a large number (>50) of dual-gated FETs fabricated at random across the large-area bilayer graphene film also corroborates the success of our synthesis technique. Moreover, through catalyst engineering, growth optimization, and element analysis of catalyst, it is shown that achieving surface catalytic graphene growth mode and precise control of surface carbon concentration are key factors determining the growth of high quality and large area Bernal stacked bilayer graphene on Cu−Ni alloy. This discovery can not only open up new vistas for large-scale electronic and photonic device applications of graphene but also facilitate exploration of novel heterostructures formed with emerging beyond graphene two-dimensional atomic crystals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition

Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving prope...

متن کامل

Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy.

The growth of large-area bilayer graphene has been of technological importance for graphene electronics. The successful application of graphene bilayers critically relies on the precise control of the stacking orientation, which determines both electronic and vibrational properties of the bilayer system. Toward this goal, an effective characterization method is critically needed to allow resear...

متن کامل

Layer-by-layer synthesis of large-area graphene films by thermal cracker enhanced gas source molecular beam epitaxy

A thermal cracker enhanced gas source molecular beam epitaxy system was used to synthesize large-area graphene. Hydrocarbon gas molecules were broken by thermal cracker at very high temperature of 1200 C and then impinged on a nickel substrate. High-quality, large-area graphene films were achieved at 800 C, and this was confirmed by both Raman spectroscopy and transmission electron microscopy. ...

متن کامل

Synthesis of high quality two-dimensional materials via chemical vapor deposition

Two-dimensional (2D) materials have attracted much attention due to their unique properties and great potential in various applications. Controllable synthesis of 2D materials with high quality and high efficiency is essential for their large scale applications. Chemical vapor deposition (CVD) has been one of the most important and reliable techniques for the synthesis of 2D materials. In this ...

متن کامل

Bilayer Graphene Growth by Low Pressure Chemical Vapor Deposition

Successfully integrating graphene in standard processes for applications in electronics relies on the synthesis of high-quality films. In this work we study Low Pressure Chemical Vapor Deposition (LPCVD) growth of bilayer graphene on the outside surface of copper enclosures. The effect of several parameters on bilayer growth rate and domain size was investigated and high-coverage bilayers films...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014